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LETTER TO THE EDITOR

Coherent states for the hydrogen atom

John R Klauder
Departments of Physics and Mathematics, University of Florida, Gainesville, FL 32611, USA

Received 13 March 1996

Abstract. The long-standing problem of finding coherent states for the (bound state portion
of the) hydrogen atom is positively resolved. The states in question (i) are normalized and
parametrized continuously, (ii) admit a resolution of unity with a positive measure, and (iii) enjoy
the property that the temporal evolution of any coherent state by the hydrogen atom Hamiltonian
remains a coherent state for all time.

1. Harmonic oscillator coherent states

In modern terms, the distinguished set of states Schrödinger introduced for the harmonic
oscillator [1] are now commonly known as coherent states [2] and are given, for allz ∈ C,
by

|z〉 ≡ e(za
†−z∗a)|0〉 = e− 1

2 |z|2
∞∑
n=0

zn√
n!

|n〉 (1)

where [a, a†] = 1 as usual. Here|n〉, n = 0, 1, 2, . . ., denote normalized eigenstates of
the number operatorN , N |n〉 = n|n〉, which may be identified with the eigenstates of the
harmonic oscillator HamiltonianH0 = ωN = ωa†a (h̄ = 1). As such it follows that

e−iH0t |z〉 = e− 1
2 |z|2

∞∑
n=0

zne−inωt
√
n!

|n〉 = |e−iωtz〉 (2)

illustrating the fact that the time evolution of any such coherent state remains within the
family of coherent states; we shall refer to the property embodied in (2) as temporal stability
of the coherent states underH0, or, more briefly, just astemporal stability. Furthermore,
these states are evidently continuous in their labelz = x + iy and admit a resolution of
unity given by

11 =
∫

|z〉〈z| dx dy/π (3)

integrated overC. Continuity in the labels plus a resolution of unity establish that the set
{|z〉} is a set of coherent states in the modern sense of the term [3].

2. Giving up the group

Of course, there exist many other sets of states, which we also refer to as coherent states,
that are continuous in their labels and admit a resolution of unity. Such states may, for
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example, take the form, for allζ ∈ C, given by

|ζ 〉 = M(|ζ |2)
∞∑
n=0

ζ n√
ρn

|n〉 (4)

whereM is chosen so that〈ζ |ζ 〉 = 1, so long as a positive weightk exists such that when
integrated over the plane(ζ = ξ + iη)

11 =
∫

|ζ 〉〈ζ | k(|ζ |2) dξ dη/π . (5)

Evidently e−iH0t |ζ 〉 = |e−iωtζ 〉 holds for all ζ ∈ C for this alternative set of states just as
well. To ensure (5) it suffices to have

ρn =
∫ ∞

0
unρ(u) du

ρ(u) ≡ M2(u) k(u)

(6)

and to generate such examples it is easiest to chooseρ first†. As one example of such a
set of alternative coherent states for the harmonic oscillator we offerρ(u) = e−√

u/2, with
ρn = (2n+ 1)! andM2(u) = √

u/ sinh
√
u. Do not look for a transitively acting group or

one up to a factor (as in (1)) that defines the states|ζ 〉 as unitary tranformations of a fiducial
vector; there is no such group [4]. Such states are generally not minimal uncertainty states,
of course, but minimal uncertainty states by themselves do not ensure temporal stability as
illustrated by the example of squeezed states.

3. Covering-space formulation

As one further generalization we wish to extend the polar coordinatesr, θ (z ≡ reiθ ), where
0 6 r < ∞, −π < θ 6 π , to their covering space, namely the domain 06 r < ∞,
−∞ < θ < ∞. To this end we introduce

|r, θ〉 ≡ M(r2)

∞∑
n=0

(rneinθ/
√
ρn)|n〉 (7)

and a measureν(r, θ) defined by∫
F(r, θ) dν(r, θ) ≡ lim

2→∞
1

22

∫ ∞

0
dr2 k(r2)

∫ 2

−2
dθ F (r, θ). (8)

It follows that the states|r, θ〉 are continuous inr andθ , and admit the resolution of unity

11 =
∫

|r, θ〉〈r, θ | dν(r, θ). (9)

Evidently exp(−iH0t) |r, θ〉 = |r, θ − ωt〉, which is how temporal stability appears in the
present notation.

† We assumeρ is chosen so that all moments exist and that the sum in (4) converges strongly for allζ ∈ C.
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4. Relaxing the functional dependence

Prior to considering coherent states for the hydrogen atom, we first analyse a simpler,
yet related example. In particular, we consider a single degree of freedom system with a
Hamiltonian given byH1 ≡ −ω/(N+1)2, namely one with eigenvaluesEn ≡ −ω/(n+1)2,
n = 0, 1, 2, . . . . As coherent states for this example we choose (06 s < ∞,
−∞ < γ < ∞)

|s, γ 〉 ≡ M(s2)

∞∑
n=0

(sneiγ /(n+1)2/
√
ρn )|n〉 (10)

where each state|n〉 obeysH1|n〉 = En|n〉. Clearly, the states|s, γ 〉 are continuous and
fulfill

11 =
∫

|s, γ 〉〈s, γ | dν(s, γ ) . (11)

It is trivial to observe that

e−iH1t |s, γ 〉 = |s, γ + ωt〉 (12)

establishing that the states in question exhibit temporal stability forH1. The states defined by
(10) apply to a wide variety of choices forρ(u) and its momentsρn, n = 0, 1, 2, . . . . Perhaps
one of the simplest examples of such coherent states arises when we chooseρ(u) = e−u,
ρn = n!, andM(s2) = exp(−s2/2), in which case

|s, γ 〉 = e−s2/2
∞∑
n=0

(sneiγ /(n+1)2/
√
n! )|n〉 (13)

and

11 = lim
0→∞

1

0

∫ ∞

0

∫ 0

−0
|s, γ 〉〈s, γ | s ds dγ . (14)

5. Hydrogen atom coherent states

We now finally turn to the (bound state part of the) hydrogen atom [5]. We characterize
this example by a HamiltonianH with spectrumEn = −ω/(n + 1)2, n = 0, 1, 2, . . .,
ω = me4/2, and with a degeneracy of each level given by(n+1)2, which in turn is spanned,
for example, by standard angular momentum states|`m〉, 0 6 ` 6 n, −` 6 m 6 `, as usual.
N.B. In the present usage, n = 0, 1, 2, . . ., while the standard usage for the hydrogen atom
is n = 1, 2, 3, . . . for the principal quantum number. Thus the traditional hydrogen atom
bound state|n`m〉 becomes|n + 1`m〉. To accomodate the angular momentum states we
introduce suitable hydrogen atom adapted angular-momentum coherent states [3, 6]

|n,�〉 ≡
n∑
`=0

∑̀
m=−`

[
(2`)!

(`+m)!(`−m)!

] 1
2
(

sin
θ

2

)`−m(
cos

θ

2

)`+m
×e−i(mφ+`ψ)|n+ 1`m〉√2`+ 1 (15)

These hydrogen atom adapted angular-momentum coherent states satisfy∫
|n,�〉〈n,�| sinθ dθ dφ dψ/8π2 =

n∑
`=0

∑̀
m=−`

|n+ 1`m〉〈n+ 1`m| = 11n (16)
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which for eachn > 0 is the unit operator when acting in an angular momentum subspace in
which 06 ` 6 n. Observe for alln > 1, that the subspace in question carries areducible
representation of the rotation group with a total dimensionality of

∑n
`=0(2`+1) = (n+1)2.

The appropriate coherent states for the hydrogen atom are then given by

|s, γ,�〉 ≡ M(s2)

∞∑
n=0

(sneiγ /(n+1)2/
√
ρn )|n,�〉 . (17)

The coherent states in question are evidently continuous and furthermore satisfy (d� ≡
sinθ dθ dφ dψ/8π2)

11BS =
∫

|s, γ,�〉〈s, γ,�| dν(s, γ ) d� (18)

where the subscript BS is intended to remind us that this expression is the unit operator
only for the bound state portion of the spectrum (and zero for the continuous spectrum).
We extend the definition of the number operatorN so that

N |n,�〉 = n|n,�〉 (19)

in which case the hydrogen atom Hamiltonian readsH = −ω/(N + 1)2, ω = me4/2. It
follows that

e−iHt |s, γ,�〉 = |s, γ + ωt,�〉 (20)

demonstrating that the states in question have temporal stability. Thus we have established
our goal of exhibiting coherent states with the required continuity and resolution of unity
for the hydrogen atom, and which also exhibit temporal stability. Moreover, this goal has
been realized for a multitude of possible coherent-state sets based on various choices of the
weight ρ(u).

Finally, we turn our attention to exhibiting the hydrogen atom coherent states—at least
as much as possible—by way of their configuration-space representation. Recall the standard
spherical-coordinate representation of hydrogen atom eigenstates|n+ 1`m〉 given [7] by

〈rθφ|n+ 1`m〉 = u`n+1(r)Y`m(θ, φ) . (21)

Hereu`n+1 denotes the usual radial hydrogen atom eigenfunctions, whileY`m are the standard
angular momentum eigenfunctions. In turn,

〈rθφ|n,�〉 ≡
n∑
`=0

u`n+1(r)
∑̀
m=−`

[
(2`)!

(`+m)!(`−m)!

] 1
2
(

sin
θ

2

)`−m(
cos

θ

2

)`+m
×e−i(mφ+`ψ)Y`m(θ, φ)

√
2`+ 1 . (22)

Finally

〈rθφ|s, γ,�〉 = M(s2)

∞∑
n=0

(sneiγ /(n+1)2/
√
ρn )

×
n∑
`=0

u`n+1(r)
∑̀
m=−`

[
(2`)!

(`+m)!(`−m)!

] 1
2
(

sin
θ

2

)`−m(
cos

θ

2

)`+m
×e−i(mφ+`ψ)Y`m(θ, φ)

√
2`+ 1 . (23)

Furthermore, in units whereω = 1, the radial eigenfunctions are given by

u`n+1 = N`
n+1[2r/(n+ 1)]`F (−n+ `, 2`+ 2, 2r/(n+ 1))e−r/(n+1) (24)
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where

N`
n+1 ≡ 1

(2`+ 1)!

√
(n+ `+ 1)!

2(n+ 1)(n− `)!

(
2

n+ 1

) 3
2

(25)

and

F(−n+ `, 2`+ 2, z) = 1 + (`− n)

(2`+ 2)

z

1!
+ (`− n)(`− n+ 1)

(2`+ 2)(2`+ 3)

z2

2!

+ (`− n)(`− n+ 1)(`− n+ 2)

(2`+ 2)(2`+ 3)(2`+ 4)

z3

3!
+ · · · (26)

which has a last non-vanishing coefficient forzn−`.
Armed with this coordinate-space representation of the coherent states one may, if

desired, begin to choose an ‘optimal’ weight functionρ, e.g. by minimizing the uncertainty
product for 〈(r − 〈r〉)2〉〈(pr − 〈pr〉)2〉 for given values ofs and γ , etc. Since different
problems may well require different, problem-specific optimizations, we shall not pursue
this question further. Instead we conclude by making explicit one example of hydrogen
atom coherent states, namely, those withρn = n!, n > 0. In that case

〈rθφ|s, γ,�〉 = e−s2/2
∞∑
n=0

(sneiγ /(n+1)2/
√
n! )

×
n∑
`=0

u`n+1(r)
∑̀
m=−`

[
(2`)!

(`+m)!(`−m)!

] 1
2
(

sin
θ

2

)`−m(
cos

θ

2

)`+m
×e−i(mφ+`ψ)Y`m(θ, φ)

√
2`+ 1 . (27)

We re-emphasize that the coherent states we have introduced only span the bound state
subspace of the hydrogen atom. Therefore, it follows that

〈rθφ|r ′θ ′φ′〉 6=
∫

〈rθφ|s, γ,�〉〈s, γ,�|r ′θ ′φ′〉 dν(s, γ ) d� . (28)

6. Summary

In equation (23), and more specifically in (27), we propose a set of coherent states
appropriate to the bound state portion of the hydrogen atom. In the definition adopted, these
states involve five real parameters, namelys, γ , and� = (θ, φ, ψ). The coherent states
(i) are continuous in these five parameters, (ii) admit a resolution of unity, equation (18), as a
positive integral over one-dimensional projection operators, and (iii) evolve into one another
under time evolution with the Hamiltonian of the bound-state hydrogen atom, equation (20).
There is some arbitrariness in the definition in (23) that would permit optimization of some
additional feature(s) of the coherent states.
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